

Chapter 6: Frequency Domain Anaysis

Instructor: Prof. Cailian Chen

Outline

6-6 Closed-loop Time Response From Open-loop Frequency Response

6.6.1 Dynamic performance analysis based on open-loop frequency response

1. Second-order time-domain response

Open-loop frequency response

$$A(\omega) = \frac{\omega_n^2}{\sqrt{\omega^4 + (2\xi\omega_n\omega)^2}} \qquad \varphi(\omega) = -90^\circ - \operatorname{arctg} \frac{\omega}{2\xi\omega_n}$$

For $\omega = \omega_c$, we have $A(\omega) = 1$, and then further get

$$\frac{\omega_c}{\omega_n} = \sqrt{\sqrt{4\xi^4 + 1} - 2\xi^2}$$

$$\gamma = 180^{\circ} + \varphi(\omega_c) = \operatorname{arctg}\left[2\xi \left(\frac{1}{\sqrt{4\xi^4 + 1} - 2\xi^2}\right)^{1/2}\right]$$

The relationship between the phase margin and the damping ratio can be approximated as

Damping ratio of the
closed-loop system
$$\xi = 0.01\gamma$$
Measured form Bode
diagram of open-loop
system
$$M_{p} = e^{-\frac{\xi\pi}{\sqrt{1-\xi^{2}}}} \times 100\%$$

Rule: For second-order systems, the smaller γ , the smaller ξ and the bigger M_p . The Bigger γ , the bigger ξ and smaller M_p .

For engineering application $30^\circ \le \gamma \le 60^\circ$

$$t_s \omega_c \approx \frac{3\sqrt{\sqrt{1+4\xi^4}-2\xi^2}}{\xi}$$

Rule: Given ξ , the bigger ω_c , the smaller t_s . The system response is faster.

- 2. Relationship between time-domain and frequencydomain performance for higher-order systems
 - The overshoot M_p increases when phase margin γ decreases. Settling time t_s is also increased for smaller γ, but it is decreased with bigger ω_c.

5.6.2 Dynamic performance analysis based on closed-loop frequency response

- 1. Open-loop and closed-loop frequency responses
- Given the unity feedback system with open-loop transfer function G(s), the closed-loop frequency response is given by

$$\Phi(j\omega) = \frac{C(j\omega)}{R(j\omega)} = \frac{G(j\omega)}{1 + G(j\omega)}$$

Lower frequency part:

$$\left|\Phi(j\omega)\right| = \left|\frac{C(j\omega)}{R(j\omega)}\right| = \left|\frac{G(j\omega)}{1+G(j\omega)}\right| \approx 1$$

Higher frequency part

$$\left|\Phi(j\omega)\right| = \left|\frac{C(j\omega)}{R(j\omega)}\right| = \left|\frac{G(j\omega)}{1+G(j\omega)}\right| \approx \left|G(j\omega)\right|$$

Normally, for minimum phase unity feedback system, the closedloop output is almost equal to the lower-frequency input signal. In the higher-frequency part, the closed-loop frequency response is similar to open-loop frequency response.

2. Frequency-domain performance analysis for secondorder closed system

Closed-loop frequency response

$$\frac{C(j\omega)}{R(j\omega)} = \frac{1}{(1 - \frac{\omega^2}{\omega_n^2}) + j2\zeta \frac{\omega}{\omega_n}} = M(\omega)e^{j\varphi(\omega)}$$

(1) Resonant frequency

$$\omega_r = \omega_n \sqrt{1 - 2\zeta^2}$$

The frequency at which the maximum value of $\left|\frac{C(j\omega)}{R(j\omega)}\right|$ occurs is referred to as the resonant frequency ω_r .

(2) Maximum value (Resonant peak)

$$M_r = M(\omega_r) = \frac{1}{2\zeta\sqrt{1-\zeta^2}}$$

The maximum value *Mr* is related to the overshoot of step response of the system.

The relative stability is better with the condition of smaller Mr and bigger ζ .

Normally, the ideal resonant peak is between 1.1 and 1.4. The corresponding ζ is in the region of $0.4 < \zeta < 0.7$.

(3) Bandwidth ω_b

The passband, or bandwidth, of the frequency response is defined as the range of frequencies from 0 to the frequency ω_b where the magnitude is $\frac{1}{\sqrt{2}}$ times of the value at $\omega=0$ (Log-magnitude response decreases to 3dB less than the value of $\omega=0$)

$$\omega_{b} = \omega_{n} \sqrt{1 - 2\zeta^{2} + \sqrt{2 - 4\zeta^{2} + 4\zeta^{4}}}$$

For $\omega > \omega_{b}$, $201g |\Phi(j\omega)| < 201g (\frac{1}{\sqrt{2}} \cdot |\Phi(j0)|) = 201g |\Phi(j0)| - 3$

• For open-loop system with $v \ge 1$, since $20 \lg |\Phi(j0)| = 0$ we have $20 \lg |\Phi(j\omega)| < -3 db$

•The bandwidth reflects the filtering of noise. The noise is generally in a band of frequencies above the dominant frequency band of the true signal.

The bandwidth also reflects the response speed. The bigger the bandwidth is, the faster the response goes.

Example 6.16: Given unity-feedback control system with Type I openloop transfer function

$$G_0(s) = \frac{5}{s(s+1)(s+4)} = \frac{5}{s^3 + 5s^2 + 4s}$$

Now add one zero and one pole to the system, and the compensation is

 $G_c(s) = \frac{5.94(s+1.2)}{(s+4.95)}$

Please analyze the frequency response for two cases. (before and after adding the extra zero and pole)

Solution: The transfer function with the compensation is given by

$$G(s) = \frac{29.7(s+1.2)}{s(s+1)(s+4)(s+4.95)}$$

- It is observed from the figures that the phase margin and gain margin are both increased after adding the extra zero and pole.
- The more phase margin, the smaller overshoot.

上海

SHANGHAI JIAO TONG UNIVERSITY

Summary of Chapter 6

Key points:

- Computing of frequency response
- Sketching of Nyquist diagram and Bode diagram
 - Nyquist diagram for open-loop system with integration elements
 - Asymptotes for Log-magnitude diagram
- Frequency domain stability criterion
 - Nyquist stability criterion (especially for systems with integration elements)
 - Stability criterion based on Bode diagram
- Relative stability

Phase margin and gain margin (definition and graphs)