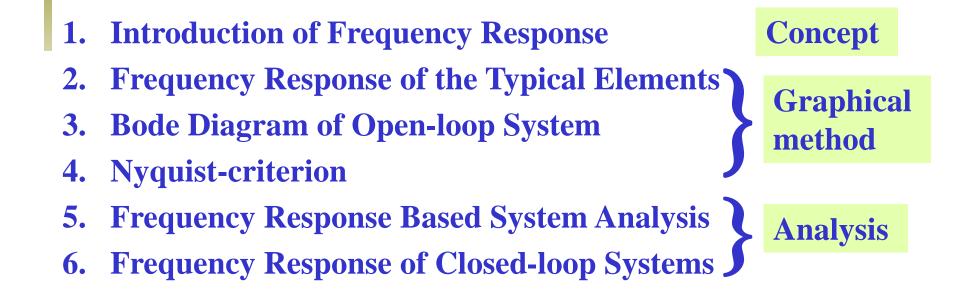


Chapter 6: Frequency Domain Anaysis

Outline



6-1 Introduction

Key problem of control: stability and system performance

Question: Why Frequency Response

Analysis:

- **1.** Weakness of root locus method relies on the existence of open-loop transfer function
- 2. Weakness of time-domain analysis method is that time response is very difficult to obtain
 - **Computational complex**
 - **Difficult for higher order system**
 - **Difficult to partition into main parts**
 - Not easy to show the effects by graphical method

Frequency Response Analysis

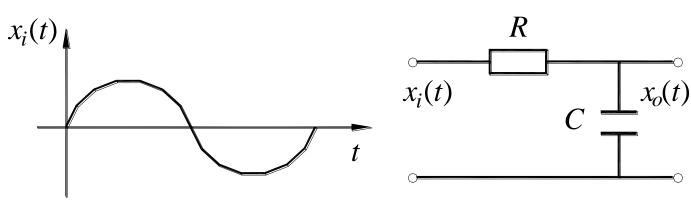
Three advantages:

- * Frequency response(mathematical modeling) can be obtained directly by experimental approaches.
- * Easy to analyze effects of the system with sinusoidal signals
- * Convenient to measure system sensitivity to noise and parameter variations
- However, NEVER be limited to sinusoidal input
 - * Frequency-domain performances → time-domain performances

Frequency domain analysis is a kind of (indirect method) engineering method. It studies the system based on frequency response which is also a kind of mathematical model.

Frequency Response

Example 5.1: RC circuit



$$u_{i} = A\sin(\omega t + \varphi_{0})$$
$$U_{i}(s) = \frac{U_{1m}\omega}{s^{2} + \omega^{2}}$$

 $U_0(s) = \frac{1}{Ts+1} \cdot \frac{U_{1m}\omega}{s^2 + \omega^2}$

Transfer function

$$G(s) = \frac{1}{RCs+1} = \frac{1}{Ts+1}$$

By using inverse Laplase transform

$$u_{0}(t) = \frac{U_{1m}T^{2}\omega}{1+T^{2}\omega^{2}}e^{-\frac{t}{T}} + \frac{U_{1m}}{\sqrt{1+T^{2}\omega^{2}}}\sin(\omega t + \varphi) \varphi = -\arctan(\omega T)$$

Transient response Steady state response

$$\frac{\text{Steady state response of } u_{0}}{\lim_{t \to \infty} u_{0} = \frac{U_{1m}}{\sqrt{1+T^{2}\omega^{2}}}\sin(\omega t + \varphi)} \qquad suppose \varphi_{0} = 0$$

$$= U_{1m} \left| \frac{1}{1+j\omega T} \right| \sin(\omega t + \angle \frac{1}{1+j\omega T})$$

Proposition: When the input to a linear time-invariant (LTI) system is sinusoidal, the steady-state output is a sinusoid with the same frequency but possibly with different amplitude and phase.

SHANGHAI JIAO TONG UNIVE

Definition: Frequency response (or characteristic) is the ratio of the complex vector of the steady-state output versus sinusoidal input for a linear system.

$$G(j\omega) = \frac{1}{1 + j\omega T} = A(\omega)e^{j\varphi(\omega)}$$

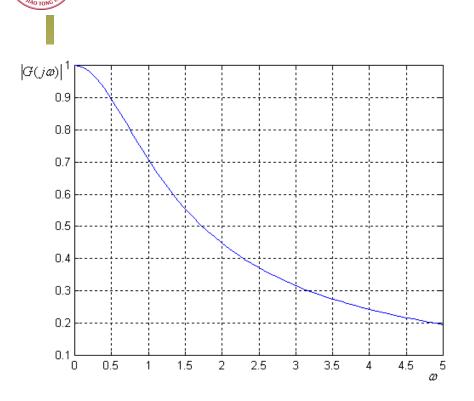
$$A(\omega) = \left|\frac{1}{1+j\omega T}\right| = \frac{1}{\sqrt{1+\omega^2 T^2}};$$

Magnitude response

$$\phi(\omega) = \angle (\frac{1}{1 + j\omega T}) = -\operatorname{arctg} \omega T$$

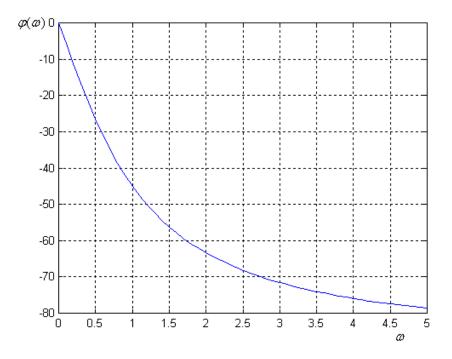
Phase response

 $\omega = 0$ The output has same magnitude and phase with input Magnitude will be attenuated and phase lag is increased.



Magnitude of output versus input

Magnitude characteristic



Phase error of output and input

Phase characteristic

Generalized to linear time-invariant system

Transfer function of closed-loop system $G(s) = \frac{C(s)}{R(s)} = \frac{N(s)}{D(s)} = \frac{N(s)}{(s+p_1)(s+p_2)\cdots(s+p_n)}$

where p_1, \dots, p_n are different closed-loop poles. Given the sinusoidal input

$$r(t) = A_r \sin \omega t \qquad R(s) = \frac{A_r \omega}{s^2 + \omega^2}$$
$$C(s) = G(s) \cdot \frac{A_r \omega}{s^2 + \omega^2} = \frac{N(s)}{D(s)} \cdot \frac{A_r \omega}{s^2 + \omega^2}$$
$$= \frac{a}{s + j\omega} + \frac{\overline{a}}{s - j\omega} + \frac{b_1}{s + p_1} + \frac{b_2}{s + p_2} + \dots + \frac{b_n}{s + p_n}$$

$$c(t) = ae^{-j\omega t} + \overline{a}e^{j\omega t} + b_1e^{-p_1t} + b_2e^{-p_2t} + \dots + b_ne^{-p_nt}$$

$$= \sum_{i=1}^{n} b_i e^{-p_i t} + (ae^{-j\omega t} + \overline{a}e^{j\omega t})$$
$$= c_t(t) + c_s(t)$$

 $(t \ge 0)$

Transient response Steady state response

For a stable closed-loop system, we have $-p_i < 0$

$$a = G(s) \cdot \frac{A_r \omega}{s^2 + \omega^2} \cdot (s + j\omega) |_{s=-j\omega} = -\frac{A_r G(-j\omega)}{2j}$$
$$\overline{a} = G(s) \cdot \frac{A_r \omega}{s^2 + \omega^2} \cdot (s - j\omega) |_{s=j\omega} = \frac{A_r G(j\omega)}{2j}$$

 $G(j\omega) = |G(j\omega)| e^{j \angle G(j\omega)} \qquad G(-j\omega) = |G(-j\omega)| e^{-j \angle G(j\omega)} = |G(j\omega)| e^{-j \angle G(j\omega)}$

Furthermore, we have

$$c_{s}(t) = ae^{-j\omega t} + \overline{a}e^{j\omega t}$$

$$= A_{r} |G(j\omega)| \frac{e^{j(\omega t + \angle G(j\omega))} - e^{-j(\omega t + \angle G(j\omega))}}{2j}$$

$$= A_{r} |G(j\omega)| \sin(\omega t + \angle G(j\omega))$$

$$= A_{c} \sin(\omega t + \varphi)$$

The magnitude and phase of steady state are as follows

$$A_{c} = A_{r} |G(j\omega)|; \quad \varphi = \angle G(j\omega)$$

By knowing the transfer function G(s) of a linear system, the magnitude and phase characteristics completely describe the steady-state performance when the input is sinusoid.

Frequency-domain analysis can be used to predict both timedomain transient and steady-state system performance.

Relation of transfer function and frequency characteristic of LTI system (only for LTI system)

$$G(s)\Big|_{s=j\omega} = G(j\omega) = |G(j\omega)| e^{j\angle G(j\omega)}$$

Substitute $s=j\omega$ into the transfer function

$$F(s) = L[f(t)] = \int_{-\infty}^{+\infty} f(t)e^{-st}dt$$
$$f(t) = L^{-1}[F(s)] = \int_{-\infty}^{+\infty} F(s)e^{st}ds$$

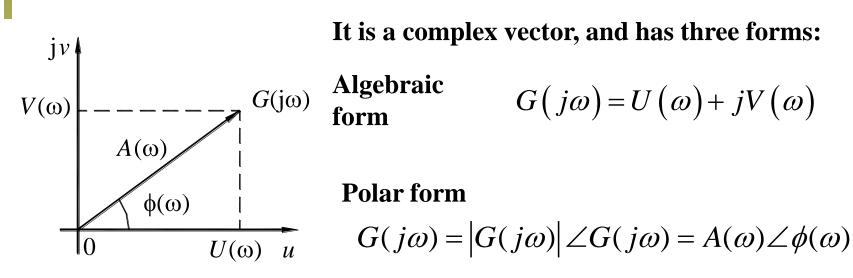
Laplace transform

Inverse Laplace transform

$$F(j\omega) = F[f(t)] = \int_{-\infty}^{+\infty} f(t)e^{-j\omega t}dt$$
Fourier transform
$$F(t) = F^{-1}[F(s)] = \frac{1}{2\pi j} \int_{-\infty}^{+\infty} F(j\omega)e^{j\omega t}d\omega$$
Inverse Fourier transform

nverse Fourier transform

Vector of frequency characteristics



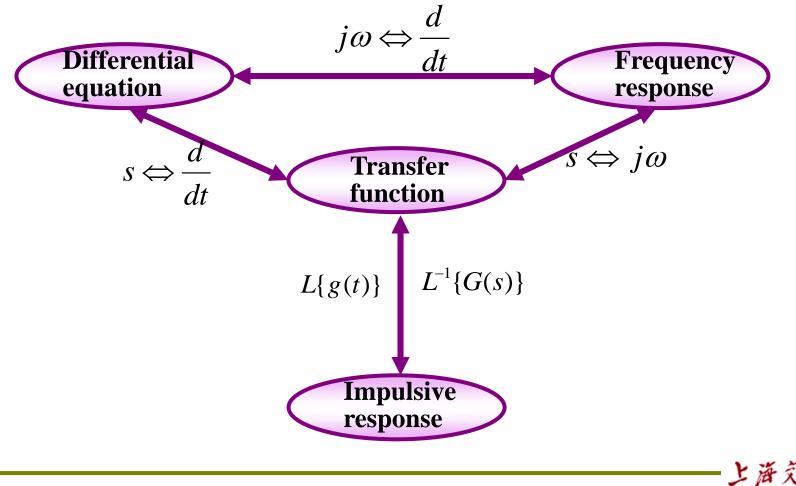
Exponential form $G(j\omega) = |G(j\omega)|e^{j\angle G(j\omega)} = A(\omega)e^{j\phi(\omega)}$

$$A(\omega) = |G(j\omega)| = \sqrt{U^2(\omega) + V^2(\omega)} \qquad U(\omega) = A(\omega)\cos\phi(\omega)$$

$$\phi(\omega) = \arctan\left[\frac{V(\omega)}{U(\omega)}\right] \qquad V(\omega) = A(\omega)\sin\phi(\omega)$$

上海父迎大学 Shanghai liao Tong University

We have learned following mathematical models: differential equation, transfer function and frequency response



SHANGHAI JIAO TONG UNIVERSITY

Example 5.2: Given the transfer function

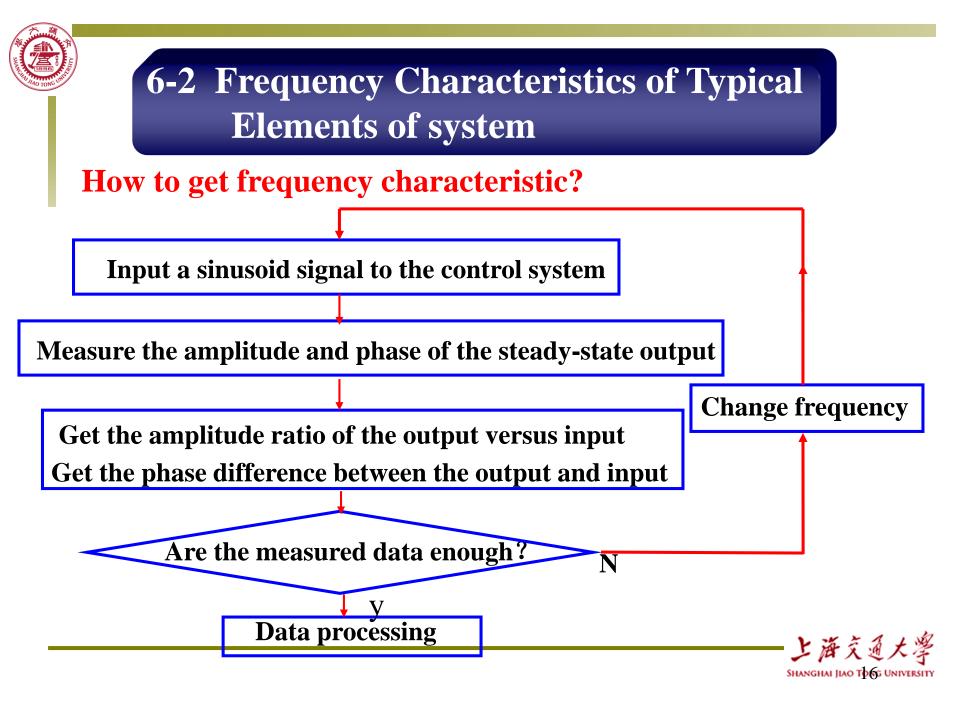
$$G(s) = \frac{C(s)}{R(s)} = \frac{1}{s^2 + 3s + 4}$$

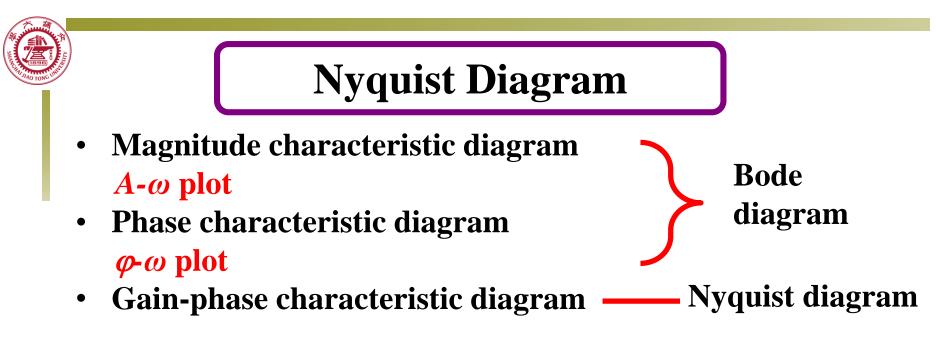
Differential equation:

$$\frac{d^2c(t)}{dt^2} + 3\frac{dc(t)}{dt} + 4c(t) = r(t)$$

Frequency response:

$$G(j\omega) = \frac{c(j\omega)}{s(j\omega)} = \frac{1}{(j\omega)^2 + 3(j\omega) + 4} = \frac{1}{4 - \omega^2 + 3j\omega}$$

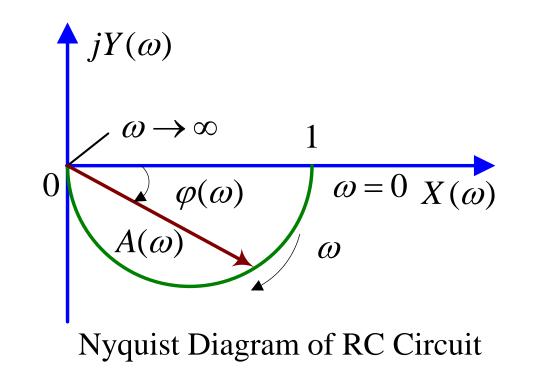




Polar form or algebraic form: A and φ define a vector for a particular frequency ω .

$$G(j\omega) = |G(j\omega)|e^{j\varphi(\omega)} = X(\omega) + jY(\omega)$$

ω	0	1/(2τ)	$1/\tau$	$2/\tau$	3/τ	$4/\tau$	$5/\tau$	∞
$A(\omega)$	1	0.89	0.70	0.45	0.32	0.24	0.2	0
			/					
$\varphi(\omega)$	0	-26.6	-45	-63.5	-71.5	-76	-78.7	-90



Bode Diagram

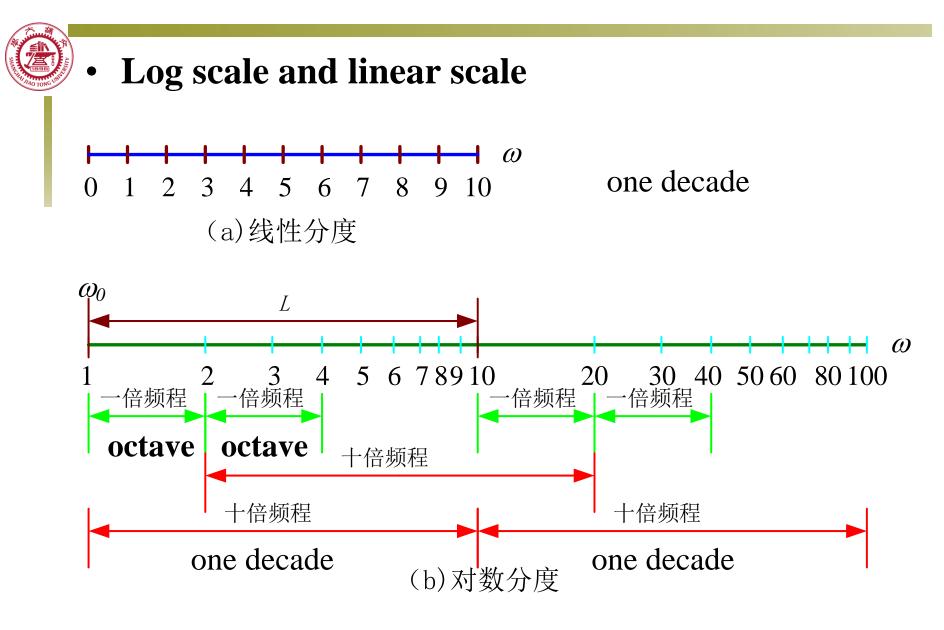
- Bode Diagram: Logarithmic plots of magnitude response and phase response
- Horizontal axis: *lgω* (logarithmic scale to the base of 10) (unit: rad/s)
- Log Magnitude

In feedback-system, the unit commonly used for the logarithm of the magnitude is the decibel (dB)

$$L(\omega) = 20 \lg |G(j\omega)| = 20 \lg A(\omega)$$

Property 1: As the magnitude doubles, the decibel value increases by 6 dB.

As the magnitude increases by a factor of 10, the decibel value increases by 20 dB.

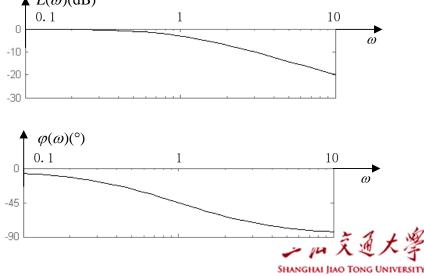


上海交通

SHANGHAI JIAO TONG UNIVERSIT

Notation:

- Logarithmic scale use the nonlinear compression of horizontal scale. It can reflect a large region of frequency variation.
 Especially expand the low-frequency range.
- Logarithmic magnitude response simplify the plotting.
 Multiplication and division are changed into addition and subtraction.
- We cannot sketch $\omega = 0$ on the horizontal scale. The smallest ω can be determined by the region of interest.
- Given *T*=1, plot the Bode Diagram by using Matlab bode([1],[1 1])



Frequency Characteristic of Typical Elements

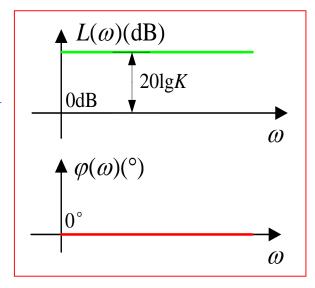
- Seven typical elements
- **1.Proportional element**

Frequency characteristic $G(j\omega) = K$

It is independent on ω.

The corresponding magnitude and phase characteristics are as follows:

 $\begin{cases} A(\omega) = K \\ \varphi(\omega) = 0^{\circ} \end{cases} \xrightarrow{K} 0 \\ X(\omega) \end{cases}$



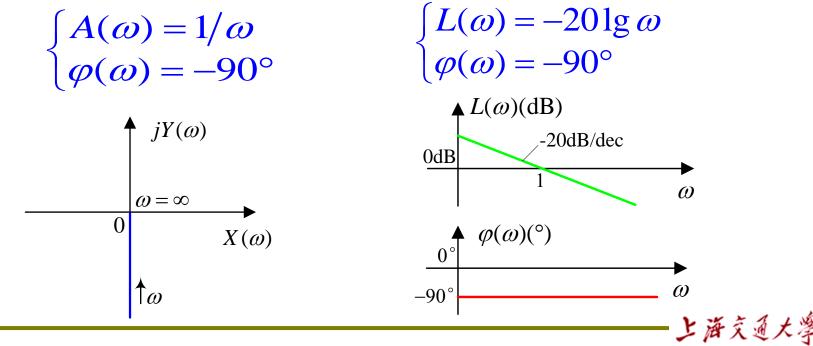
 $\begin{cases} L(\omega) = 20 \lg K \\ \varphi(\omega) = 0^{\circ} \end{cases}$

2. Integration element

Frequency characteristic

$$G(j\omega) = \frac{1}{j\omega} = \frac{1}{\omega}e^{-j\frac{\pi}{2}}$$

The corresponding magnitude and phase characteristics are as follows:

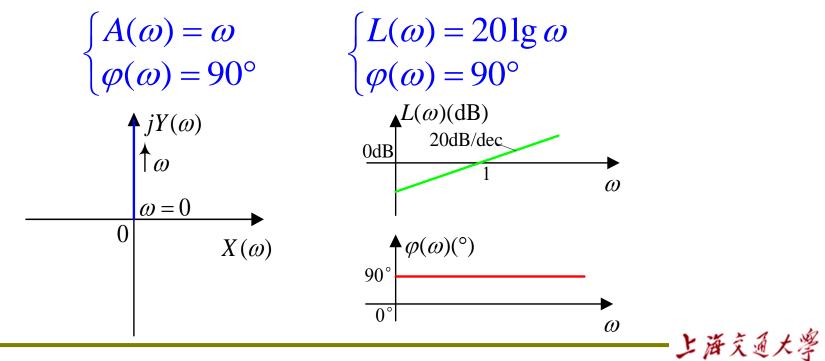


Shanghai Jiao Tong University

3. Derivative Element

Frequency characteristic $G(j\omega) = j\omega = \omega e^{j\frac{\pi}{2}}$

The corresponding magnitude and phase characteristics are as follows:



SHANGHAI JIAO TONG UNIVERSITY

4.Inertial Element

Frequency characteristic

 $G(j\omega) = \frac{1}{1 + j\omega T}$

Magnitude and phase responses

 $\varphi(\omega)$

 $\omega = 0_{\mathbf{v}}$

上海

$$\begin{cases} A(\omega) = \frac{1}{\sqrt{1 + \omega^2 T^2}} \\ \varphi(\omega) = -\operatorname{arctg} \omega T \end{cases}$$

Rewrite it into real and imaginary parts $G(j\omega) = \frac{1}{1+\omega^2 T^2} - j \frac{\omega T}{1+\omega^2 T^2} = X(\omega) + jY(\omega)$ $[X(\omega) - 0.5]^2 + Y^2(\omega) = 0.5^2$ $\omega = \infty$ 0.51

 ωT

>Nyquist diagram is half of the circle with center at (0.5,0) and radius 0.5.

Log magnitude and phase characteristics are as follows:

$$\begin{cases} L(\omega) = 20 \lg \frac{1}{\sqrt{1 + \omega^2 T^2}} = -20 \lg \sqrt{1 + \omega^2 T^2} \\ \varphi(\omega) = -\operatorname{arctg} \omega T \end{cases}$$

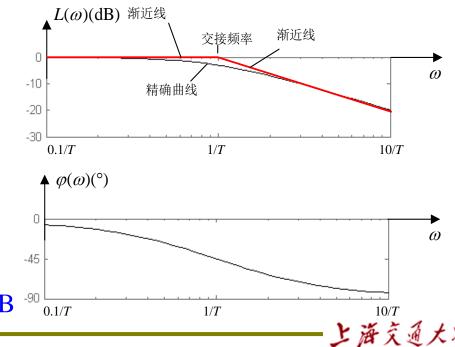
Low-frequency region: $\omega << 1/T, L(\omega) \approx -20 \lg 1 = 0$ $\omega >> 1/T, L(\omega) \approx -20 \log \omega T$

Asymptote

High-frequency region:

The frequency where the low- and high-frequency asymptotes meet is called the break frequency ($\omega = 1/T$).

The true modulus has a value of $L(\omega) = -10 \lg (1+1) \approx -3 dB$



• Remarks:

① The error of true modulus and asymptote

ωΤ	0.1	0.2	0.5	1	2	5	10
$\Delta L(\boldsymbol{\omega})$	-0.04	-0.17	-0.97	-3.01	-0.97	-0.17	-0.04

It can be seen that the error at the break frequency is biggest.

(2) $\varphi(\omega)$ is symmetrical at all rotations about the point $\omega = 1/T, \varphi(\omega) = -45^{\circ}$

ωΤ	0.1	0.2	0.25	0.5	1	2	3	4	5	8	10
$\varphi(\omega)$	-6	-11	-14	-27	-45	-63	-72	-76	-79	-83	-84
									上海	交通大	

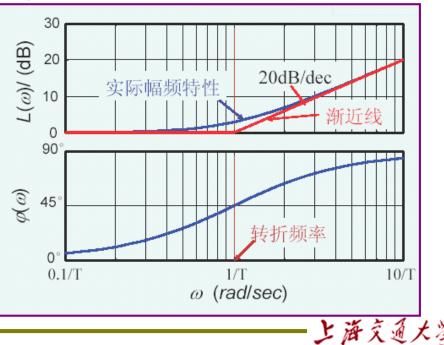
Shanghai Iiao Tong Uni

5. First Derivative Element Frequency characteristic $G(j\omega) = 1 + j\omega T$ $\begin{cases} A(\omega) = \sqrt{1 + \omega^2 T^2} \\ \varphi(\omega) = \operatorname{arctg} \omega T \end{cases}$ Im $\omega = \infty$ $\sqrt{1+\tau^2\omega^2}$

 $\begin{array}{c|c} 0 \\ arctg \omega \tau \end{array} = 0 \\ Re \\ Re \\ 1 \end{array}$

Nyquist Diagram

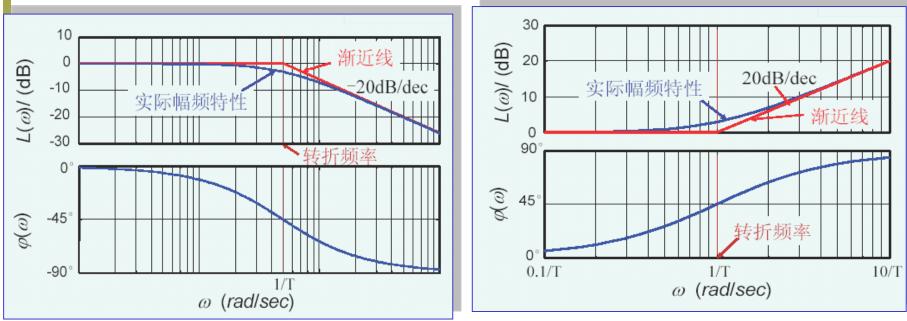
 $\begin{cases} L(\omega) = 20 \lg \sqrt{1 + \omega^2 T^2} \\ \varphi(\omega) = \operatorname{arctg} \omega T \end{cases}$



SHANGHAI JIAO TONG UNIVERSITY

Inertial Element

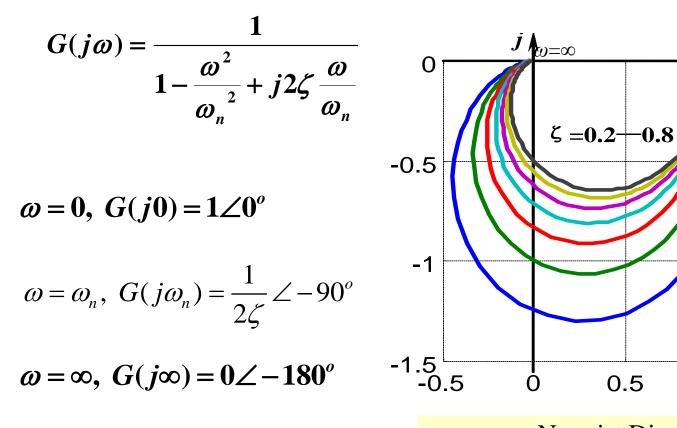
First Derivative Element



Frequency characteristics are the inverse each other

- Log magnitude characteristic is symmetrical about the line of 0dB
- Phase characteristic is symmetrical about 0 degree

6. Second order oscillation element (Important)



Nyquist Diagram

1

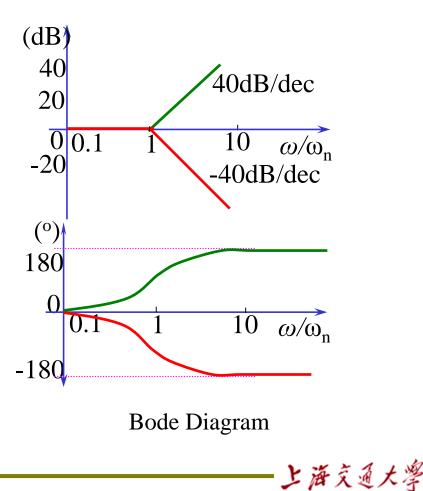
1.5

 $\omega = 0$

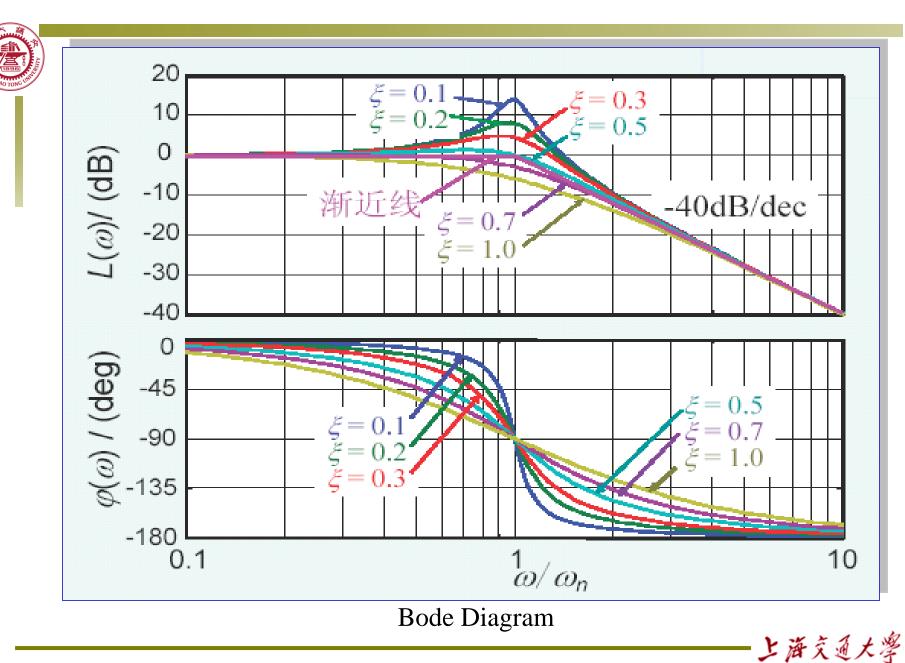
$$L(\omega) = -20 \lg \sqrt{(1 - \omega^2 / \omega_n^2)^2 + 4\zeta^2 (\omega / \omega_n)^2}$$

$$\varphi(\omega) = -\operatorname{arctg} \frac{2\zeta \omega / \omega_n}{1 - (\omega / \omega_n)^2}$$

- For $\omega << \omega_n, L(\omega) \approx 0$
- For $\omega >> \omega_n$, $L(\omega) \approx -40 lg \omega / \omega_n$ $= -40 (lg \omega - lg \omega_n)$



SHANGHAI JIAO TONG UNIVERSITY



SHANGHAI JIAO TONG UNIVERSITY

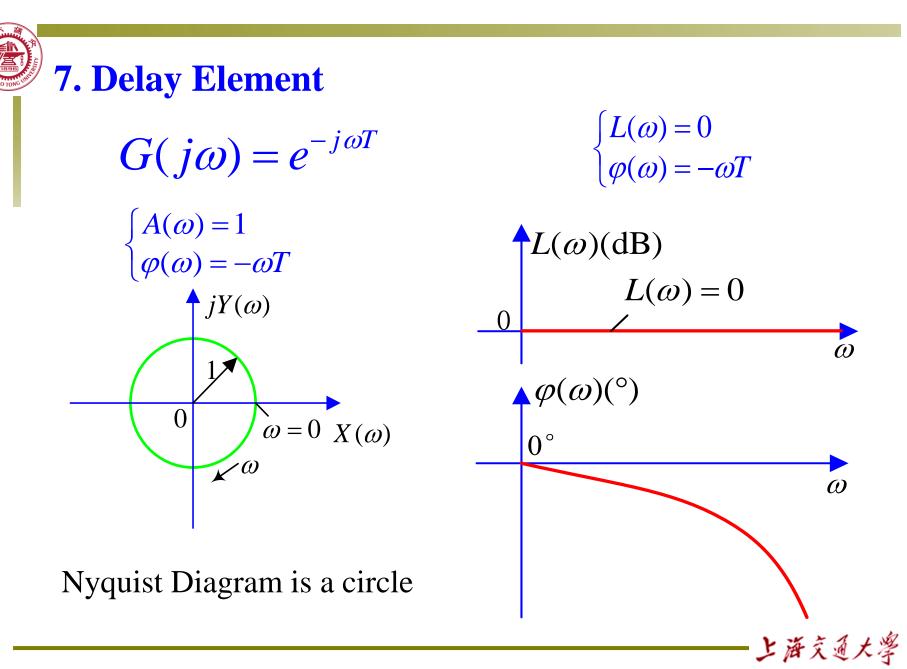
Remarks:

> The low- and high-frequency asymptotes intersect at $\omega = \omega_n$, i.e. the undamped natural frequency.

> Unlike a first-order element which has a singlevalued deviation between the approximation and accurate moduli, the discrepancy depends upon the damping ratio ξ .

> The true magnitude may be below or above the straight-line approximate magnitude.

> The resonant peak M_r is the maximum value of $L(\omega)$



SHANGHAI JIAO TONG UNIVERSITY