Chapter 6: Frequency Domain
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6-1 Introduction

Key problem of control: stability and system performance

Question: Why Frequency Response

Analysis:
1. Weakness of root locus method relies on the existence of
open-loop transfer function
2. Weakness of time-domain analysis method is that time
response is very difficult to obtain
Computational complex
Difficult for higher order system
Difficult to partition into main parts
Not easy to show the effects by graphical method
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Frequency Response Analysis
Three advantages:

* Frequency response(mathematical modeling) can be
obtained directly by experimental approaches.

* Easy to analyze effects of the system with sinusoidal signals

* Convenient to measure system sensitivity to noise and
parameter variations

However, NEVER be limited to sinusoidal input

* Frequency-domain performances = time-domain
performances

Frequency domain analysis is a kind of (indirect method)
engineering method. It studies the system based on frequency
response which is also a kind of mathematical model.




Frequency Response

Example 5.1: RC circuit
X (1) R

TN X () EEYC
\_ t T

u. = Asin(at + ¢,)
_ Ulma) U . (s) = 1 . Ulma)
Ui(s)_sz+w2 o (%) Ts+1 s° +w°

G(s): 1 _ 1
RCs+1 Ts+1

Transfer function




By using inverse Laplase transform

U, T’0 U, .
u,(t) = ———e¢ 1 sin(wt + @) p=-arctg(wT)
l+ 7w \/1 + 7%w?
N Vv Y, k ~ J
Transient response Steady state response
Steady state response of u,
U )
limu L sin(awt + @) suppose =0
t—oo 0 '\/1+T2 pp (po
] 1
=U,, _ sin(ot + £ -
1+ JooT 1+ JooT

Proposition: When the input to a linear time-invariant (LT1) system
Is sinusoidal, the steady-state output is a sinusoid with the same
frequency but possibly with different amplitude and phase.
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,,,;;; Definition: Frequency response (or characteristic) is the ratio
I of the complex vector of the steady-state output versus
sinusoidal input for a linear system.

1 1

Alw) = 1+ joT| AraT? ) Magnitude response
+®
1
Hw) = L(———) = —arctgwT Phase response
1+ JoT

w = (O Theoutput has same magnitude and phase with input

T Magnitude will be attenuated and phase lag is increased.
(0,
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== Generalized to linear time-invariant system

Transfer function of closed-loop system

6(s)= S _NG) _ N(s)
R(s) D(s) (S+p)(s+Ppy)--(s+Pp,)
where p,,---, P, are different closed-loop poles.

Given the sinusoidal input

rM)=Asinat  R(S$)=5—;
)

@

@ N(s) Aw
C(s)=G(s)- = :
(5)=G) s+ D(S) s*+ o’
a a b, b, b,
: - _I_ - _I_ _I_ +III+
S+jo S—jw s+p, S+p, S+ P,




C(t) — qe 19t L gplet 4 ble_ Pt bze_ Pt 4 bne_p”t

n
= > be "|+/(ae” ! + @)

= C;(t) +¢(t) (t>0)

Transient response  Steady state response

For a stable closed-loop system, we have ~P; <0

a=G(s)- Sffa))z (s+Jo) | j,=— AGZJ@)

5=G(S)'Szp_}F (s—jo) = AGZ(JJG))

G(jo) 4 G(jw) [e1”  G(-jw) 4 G(-jw) e 1 <|G(jw) e 0"
.r—' .‘Fﬂ' A ﬁ,/
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Furthermore, we have

c(t) =ae ' +ae
ej(a)t+4G(ja))) . e—j(a)t+LG(ja)))

=A |G(Jo)| 2]
= A |G(Jo)|sin(ot + £G(jw))
= A, sin(wt + @)

The magnitude and phase of steady state are as follows
A=A|G(jo)|; ¢=4CG(jo)

By knowing the transfer function G(s) of a linear system, the
magnitude and phase characteristics completely describe the steady-
state performance when the input is sinusoid.

Frequency-domain analysis can be used to predict both time-
domain transient and steady-state system performance.
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Relation of transfer function and frequency characteristic of
LTI system (only for LTI system)

F(s)=L[f(t)]= j Tt (t)e vt Laplace transform

f(t)=L7[F(s)]= ICMF(S)GStdS Inverse Laplace transform

F(jo)=F[f(t)]= j: f(t)e it Fourier transform
f(t)=F*[F(s)] :%j _: F(jw)e'"dw| Inverse Fourier transform
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#=¢/ \ector of frequency characteristics

ivi It is a complex vector, and has three forms:
Algebraic
form

G(jo) G(jw)=U(w)+jV (o)

Polar form
U o Clio)=|G(je)|£G(jo) = Alw)Zé(w)




We have learned following mathematical models:
differential equation, transfer function and frequency
response

d
jo < —
dt

Ifferentia
equation

Frequenc
response

Transfer
function

S <& —
dt

{o®)} | LH{G(6)}

Impulsive
response
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Example 5.2: Given the transfer function

C(s 1
G(s)= () _ >
R(s) s +3s+4
Differential equation: ?
- a7e(t) , 39 | 4e(ty = r(t)
dt dt
Frequency response:
c(jo) 1 1

G(Jo)

“s(jo) (jo)l+3(jo)+4 4—o?+3jw




6-2 Frequency Characteristics of Typical

Elements of system

How to get frequency characteristic?

\ 4

Input a sinusoid signal to the control system

I

Measure the amplitude and phase of the steady-state output

l

Get the amplitude ratio of the output versus input
Get the phase difference between the output and input

Change frequency

a

Are the measured data enough?

Data processing
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Nyquist Diagram

« Magnitude characteristic diagram

A-w plot Bode
« Phase characteristic diagram diagram
@-o plot

« Gain-phase characteristic diagram Nyquist diagram

Polar form or algebraic form: A and ¢ define a vector for a particular
frequency w.




1/(27) | Uz | 2/t | 3/t | 4t | 5/t 00
0.89 [0.70 045|032 |0.24 | 0.2 0
7
pw) -26.6 | -45 |-635|-715| -76 |-78.7| -90
4 iY (o)
W —> © 1
0 Z0 X (o)
4@) @ =1 X(w)

/a)

Nyquist Diagram of RC Circuit




Bode Diagram

» Bode Diagram: Logarithmic plots of magnitude
response and phase response

« Horizontal axis: Igew (logarithmic scale to the base of
10) Cunit: rad/s)

* Log Magnitude

In feedback-system, the unit commonly used for the logarithm of
the magnitude is the decibel (dB)

L() = 201g|G(je)| = 201g A(c)

Property 1: As the magnitude doubles, the decibel value increases

by 6 dB.
As the magnitude increases by a factor of 10, the decibel value

increases by 20 dB.
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Notation:

— Logarithmic scale use the nonlinear compression of horizontal
scale. It can reflect a large region of frequency variation.
Especially expand the low-frequency range.

— Logarithmic magnitude response simplify the plotting.
Multiplication and division are changed into addition and
subtraction.

— We cannot sketch @ =0 on the horizontal scale. The smallest ®
can be determined by the region oI(iQ}E%rest.

0.1 1 10
« Given T=1, plotthe Bode N ' o
Diagram by using Matlab )
bode([1],[1 1])
4 0(@)C)

0.1 1 10
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=" | Frequency Characteristic of Typical Elements

Seven typical elements

i L(w)(dB
1.Proportional element ¢ (”)(I )
20IgK
Frequency characteristicG( jw) = K 0dB >
Q
It is independent on . 4 9(0)(°)
The corresponding magnitude and phase 0° >
characteristics are as follows: @
4iY (@)
{A(a)) = K ) {L(a))=20|g K
p(w) =0° o X @(w) = 0°
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. : B
w2 2. Integration element
Freguency characteristic
. 1 1 -iZ
G(lJw)=—=—e 2
Jo

The corresponding magnitude and phase
characteristics are as follows:

A(w) =1/ w {L(a)) =-20lgw
@ (w) = —90° p(w) =-90°
. 4 L(0)(dB)
)Y (o) OdB\<-20dB/dec >
® =0 1\ w
>
0 X () 4 9(0)()
0 >
Yo -90° w
Y
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== 3 Derivative Element
Frequency characteristic i

The corresponding magnitude and phase
characteristics are as follows:

{A(a)) = {L(a)) =20lgw

p(w) =90° p(w) =90°

AiY(0) AL(a))gd?d)

20dB/de
‘0 0dB/1>/ .

=0 >
0
X (@) 4 9(0)(°)
90°

0° >




=~ 4.Inertial Element
Frequency characteristic Magnitude and phase responses

. 1 ” 1
G = A(w) =
(jo) T+ jaT | Al) N
p(w) =—arctgeT

Rewrite it into real and imaginary parts
1 .ol

G(jw) = - =X 1Y

(Jo) 1+ @°T? J1+a)2-|_2 (@)+] (win(a))

[X () - 0.5 +Y2(a) = 0.5 —
=R o;5ﬂ 1

the circle with center at (0.5,0) 1,772
e e 0

Nyquist diagram is half of - IO 2(@) wzo;( \
4

and radius 0.5.




LLog magnitude and phase characteristics are as follows:

L(w) =20lg

p(w) =—arctgoT
Low-frequency region:

High-frequency region:

1
< J1+ @°T?

0<<1/T, L(w)=-201g1=0
o>>1/T, L(w)=-20lgwT

The frequency where the
low- and high-frequency
asymptotes meet IS
called the break
frequency (o=1/T).

0 |
(0]
oy AT 1
_2|:| L

The true modulus has a

value of L(w) =-101g (1+1) ~ -3dB ;7 i 1o

= 20Ig 1+ @’T?

Asymptote

L(w)(dB) #nizk
A s
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0.1T uT 10/T
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@ The error of true modulus and asymptote

It can be seen that the error at the break
frequency is biggest.

@ o(w) is symmetrical at all rotations about the point
o=1T,p(w)=-45"




¥=¢/5. First Derivative Element
Freguency characteristic

G(jw) =1+ joT

A(®) =1+ T2 L(w) = 20191+ @?T?
¢(w) = arctgwT o(w) = arctgawT

30
Im ¢ e lifi =
J o 20 ~0dB/d L]
o 2.2 i e [ e e b 20dB/dec i
1 + (i )] “‘;é‘“ 10 1«’!-{ |“'ffq‘||l|||"L|»|1‘[>‘1J [ [ I\ /I
e :%— Wi 2k
O L L T -
90°
" Re .--"""##
arctger ] “%; i i
__..--"""’ R ES
e S
. . 0.1/T /T 10/T
Nyquist Diagram o (radlsec)
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First Derivative Element

30
10 e .
3 o /8 ]
- oon L T 2 = ] |
i g = A pmingr | 20dBidec T
S il L T 20dB/dec - = ol o1 oy R S0 1 N
~ SL s i Sy .y i G
S = =1 ‘ r i 2k
— ot 0 nnnlaln
~l .30
e S
()7 pe———— = I
tenta] | f""
'-..\ —_
“\.\ S 45 L
T 45 S i 4T iy
= - /-544
-90° = 0.1/1 1/1 10/1
' w (radl/sec
w (radl/sec) ( )

Frequency characteristics are the inverse each other
 Log magnitude characteristic is symmetrical about the

line of 0dB
» Phase characteristic is symmetrical about O degree
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6. Second order oscillation element (Important)

G(jw) = =

2

) . 0)

1-— 2+124’*
1)) /),

n n

=0, G(j0)=1.0°

o=0, G(jw,) :LA—QOO
2¢

@ =, G(joo)=0L-180°

S ———

-1.5

-0.5 0 0.5 1 1.5

Nyquist Diagram




L(@)=-20lgy(1- 0’/ »,>)’ + 4 (@] @, )’

26wl @
= —arct s
(dB}
* For w<<w,, L(w)=0 40 40dB/dec
20
 Forw>>w,, ' >
001 1 10 w/o,
L(w)=-40lgw/w, -20 -40dB/dec

=-40(lg w-lgw,)

10 o/,

Bode Diagram
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20 .
10 E=10.1 0.3
&~V 0.5
m
= 0 , e
el . -40dB/dec
S = £ -l
- -30
_40 | HI""-E_
= S \
g 45 =
< -90 $=0.1°7
— &=10.2
= -135 ¢ 0.3
|||
0.1 1, 10

Bode Diagram
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The low- and high-frequency asymptotes intersect
at o= wn, I1.e.the undamped natural frequency.,

Unlike a first-order element which has a single-
valued deviation between the approximation and
accurate moduli, the discrepancy depends upon the
damping ratio &.

The true magnitude may be below or above the

straight-line approximate magnitude.

The resonant peak Mr Is the maximum value of

L(w)
X 7




=7 7. Delay Element
G(ja)) _ e_JG)T
{A(a)) =1

() =-ol
M@

NP

)/C()

Nyquist Diagram is a circle

L(w)=0
p(w) =-oT
AL(w)(dB)
L(w) =0
- »
A 9(2)(°)
0° >
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